Chem. Ber. 112, 1464 – 1469 (1979)

Darstellung und Röntgenstrukturanalyse eines Adamantyl-spirophosphorans, $C_{10}H_{15}P(O_2C_6H_4)_2$

Jörn-Volker Wei β^{*} , Reinhard Schmutzler^{*}, Dietmar Schomburg^{*} und William S. Sheldrick^{**}

Lehrstuhl B für Anorganische Chemie der Technischen Universität Braunschweig, Pockelsstraße 4, D-3300 Braunschweig^{*)}, und

Gesellschaft für Biotechnologische Forschung mbH, Mascheroder Weg 1, D-3300 Braunschweig-Stöckheim**!

Eingegangen am 6. Juli 1978

Durch Umsetzung von (1-Adamantyl)tetrafluorphosphoran mit Brenzcatechin-bis(trimethylsilylether) wurde das Spirophosphoran $C_{10}H_{15}P(O_2C_6H_4)_2$ (4) erhalten. 4 kristallisiert orthorhombisch, $P2_12_12_1$, mit a = 668.5 (1), b = 1575.8 (2), c = 1755.1 (2) pm, Z = 4, R = 0.058. Es wird C_{2v} verzerrte rechteckig-pyramidale Koordination am Phosphor gefunden.

Preparation and X-Ray Structural Analysis of an Adamantyl-spirophosphorane, C10H15P(O2C6H4)2

Reaction of (1-adamantyl)tetrafluorophosphorane with catechol bis(trimethylsilyl ether) yielded the spirophosphorane $C_{10}H_{15}P(O_2C_6H_4)_2$ (4). Crystals of 4 are orthorhombic. $P2_12_12_1$, with a = 668.5 (1), b = 1575.8 (2), c = 1755.1 (2) pm, Z = 4, R = 0.058. C_{2v} -distorted rectangular pyramidal coordination is observed at phosphorus.

Auf der Basis von halbempirischen MO-Berechnungen¹⁾ wurde vorausgesagt, daß die im allgemeinen beobachtete energetische Bevorzugung der trigonal-bipyramidalen, relativ zur quadratisch-pyramidalen Ligandenanordnung am pentakoordinierten Phosphor unter bestimmten Umständen abnehmen sollte. Eine C_{2v} -Verzerrung der trigonalen Bipyramide (TBP) in Richtung einer quadratisch-pyramidalen (SP) bzw. rechteckig-

Abb. 1. Verzerrung eines trigonal-bipyramidalen Phosphorans PX₄Y in Richtung einer quadratischen Pyramide unter dem Einfluß elektronegativer Substituenten X

pyramidalen (RP) Ligandenanordnung ist in spirobicyclischen Verbindungen des Typ PX_4Y (X sehr elektronegativ) mit zwei gespannten kleinen Ringen besonders wahrscheinlich²⁾. In der trigonalen Bipyramide müssen zwei der X-Substituenten äquatoriale Posi-

© Verlag Chemie, GmbH, D-6940 Weinheim, 1979 0009 – 2940/79/0404 – 1464 \$ 02.50/0

slängen (pm) und Winkel (°) in Spirophosphoranen. Vergleich mit idealisierten trigonal-bipyramidaler (RP) Geometrien ³⁾	n (TBP) oder rechteckig-pyramidalen	
slängen (pm) und Winkel (°) in Spirophosphoranen. Ve 781	srgleich mit idealisierten trigonal-bipyramidale	o) Geometrien ³⁾
ab. 1. Bindung:	ab. 1. Bindungslängen (pm) und Winkel (°) in Spirophosphoranen. Ve	(BT

~02¹03~~

Y	1 ⁴⁾ OPh	2a Me	2b ⁵⁾ Me	3 ⁶⁾ tBu	4 Ad	5 ⁷⁾ Ph	C e®	7 ⁹⁾ F <i>p</i> -	8a OC ₆ H ₄ OR ^{b)} ,	81 , ¹⁰⁾ <i>p</i> -OC ₆ H ₄ OR	9 ¹¹⁾ ^{b)} (C ₆ H ₅) ₅ P
$P-O^2$	165.0 (10)	167.4 (3)	167.4 (3)	168.7 (5)	170.0 (3)	169.1 (4)	165.7 (3)	165.8 (2)	168.6 (9)	166.9 (8)	166.4 (5)
$P - 0^4$	166.6 (10)	167.2 (3)	166.1 (3)	167.8 (5)	170.1 (2)	168.2 (4)	166.2 (3)	165.9 (2)	167.0 (9)	168.1 (8)	166.1 (5)
$P - 0^{1}$	166.6 (10)	165.4 (3)	165.8 (3)	166.3 (5)	166.7 (2)	165.5 (4)	164.3 (3)	162.5 (2)	164.2 (8)	163.9 (8)	160.1 (5)
$P-O^3$	166.6 (10)	164.9 (3)	165.0 (3)	166.7 (5)	166.3 (2)	165.0 (4)	164.0 (3)	162.9 (2)	164.4 (10)	164.8 (8)	157.2 (5)
P - Y	159.7 (10)	177.7 (6)	177.5 (6)	184.1 (8)	183.6 (3)	177.5 (6)	203.1 (1)	154.6 (2)	158.8 (7)	175.7 (8)	157.2 (5)
$0^2 - P - 0^4$	160.0 (23)	156.9 (1)	156.2 (1)	154.9 (3)	157.2 (1)	160.0 (2)	162.9 (1)	168.2 (1)	165.3 (4)	169.9 (5)	176.5 (12)
$0^{1} - P - 0^{3}$	151.4 (21)	148.1 (1)	147.7 (1)	147.0 (3)	144.0 (1)	145.4 (2)	149.8 (1)	146.1 (1)	143.5 (4)	137.0 (5)	126.2 (7)
Y - P - O	102.2	103.7	104.0	104.5	104.7	103.6	101.8	101.4	102.8	103.3	104.2
$\Sigma_i [\delta_i - \delta_i (TBP)]$	191.8	179.6	179.5	179.3	159.0	157.1	156.1	141.1	138.8	97.5	32.7
% Verzerrung ^{u)}	88.1	82.5	82.5	82.4	73.0	72.2	71.7	64.8	63.8	44.8	15.0

gun einer rechteckig-pyramidalen Anordnung. Für 9 ist $\Sigma_i |\delta_i(SP) - \delta_i(TBP)| = 217.9^{\circ}$. b)_{R =}

1465

1979 Darstellung und Röntgenstrukturanalyse eines Adamantyl-spirophosphorans tionen besetzen; eine rechteckig-pyramidale Konfiguration dagegen gestattet, daß die P-X-Bindungen jedes Ringes mehr oder weniger gleichen Charakter haben. Damit wird die Ringspannung im Vergleich zu der für eine trigonale Bipyramide minimalisiert; denn in letzterem Falle sind die axialen und äquatorialen Bindungen von grundsätzlich verschiedener Natur. Tatsächlich haben die Röntgenstrukturanalysen von acht verschiedenen Brenzcatechyl-Derivaten (C₆H₄O₂)₂PY C_{2v}-Verzerrungen zwischen 45 und 88% belegt (Tab. 1). Der Maßstab für den Grad der Verzerrung ist hier durch die Abweichungen der Flächen-Diederwinkel von denen einer idealisierten trigonalen Bipyramide gegeben (% Verzerrung = $\sum_{i} [\delta_i - \delta_i (TBP)] / \sum_{i} |\delta_i (RP) - \delta_i (TBP)|)^3$.

Zur experimentellen Ergänzung dieser Überlegungen wurde das Spirophosphoran 4 synthetisiert, in dem als fünfter Substituent die sehr raumerfüllende 1-Adamantylgruppe vorliegt. Die Minimalisierung von sterischen Kontakten zwischen dieser Gruppe und den restlichen Substituenten sollte eine relative Stabilisierung der rechteckig-pyramidalen Geometrie begünstigen. Die Synthese erfolgte nach einem von uns bereits beschriebenen Prinzip durch Umsetzung des Tetrafluorphosphorans $AdPF_4$ (Ad = 1-Adamantyl) mit Brenzcatechin-bis(trimethylsilylether); 4 wurde dabei als hochschmelzendes, kristallines Produkt erhalten.

Diskussion

Für 4 beträgt die C_{2v} -Verzerrung in Richtung einer rechteckig-pyramidalen Geometrie 73.0% (Tab. 1). Ein Vergleich mit den Prozentwerten von 82.5 und 82.4 für $(C_6H_4O_2)_2$ PMe bzw. $(C_6H_4O_2)_2$ P-tBu zeigt, daß die größere Raumerfüllung des Adamantylrestes nicht zu einer relativen Stabilisierung der rechteckig-pyramidalen Geometrie führt. Der P-C-

Abb. 2. Perspektivische Darstellung der Struktur von 4

Abstand von 183.6(3) pm ist signifikant länger als der in der analogen Methylverbindung (177.6 pm), aber ähnlich der in der *tert*-Butylverbindung (184.1 pm). Dies ist wahrscheinlich auf die größere Raumerfüllung des Adamantyl- bzw. *tert*-Butylrestes und die da-

durch bedingte sterische Abstoßung zurückzuführen. Evidenz für einen gewissen trigonal-bipyramidalen Charakter ist aus der Differenz der endocyclischen P–O-Bindungslängen (3.8 bzw. 3.3 pm) und aus den O(1)–P–O(3)- und O(2)–P–O(4)-Winkeln von 144.0 bzw. 157.2° abzuleiten. Aufgrund dieser Winkel liegen O(1) und O(3) 8.9 bzw. 9.0 pm unterhalb und O(2) und O(4) 9.0 bzw. 8.9 pm oberhalb der Pyramidengrundfläche; das Phosphoratom befindet sich 42.5 pm oberhalb dieser Ebene. Aus Tab. 1 ist zu entnehmen, daß die durch den durchschnittlichen Wert des Y–P–O-Winkels gegebene Steilheit der Pyramide mit zunehmender Elektronegativität des Liganden Y (d. h. mit abnehmender Elektronenpaarabstoßung der apicalen P–Y-Bindung auf den basalen P–O-Bindungen) abnimmt. Der idealisierte Wert für diesen Winkel beträgt 105°³) (vgl. 104.7° für Y = Ad und 101.4° für Y = F). Obwohl die Berry-Verzerrung für Y = OPh schon 88.1% beträgt, ist die Steilheit wesentlich geringer als für Y = Me, tBu oder Ad.

Die Maximalabweichungen von Atompositionen in den fünfgliedrigen P-O-C-C-O-Ringen von der besten Ebene der Atome treten bei O(2) und O(3) auf (6.7 bzw. 7.6 pm); dies spricht für beträchtliche π -Delokalisierung, was auch aus einem Vergleich der recht kurzen C-O-Abstände (135.8-138.4 pm) mit dem Einfachbindungswert von 143 pm gefolgert werden kann. Die Stabilisierung durch die π -Delokalisierung ist offensichtlich größer als diejenige, die durch Ringfaltung an den Sauerstoffatomen erreicht werden könnte. Ringfaltung wird bei den trigonal-bipyramidalen Verbindungen 10 und 11 beobachtet, wo eine stärkere π -Delokalisierung in den fünfgliedrigen Ringen nicht möglich ist ^{12,13)}.

Diese Untersuchung wurde durch die Deutsche Forschungsgemeinschaft und den Fonds der Chemischen Industrie unterstützt. Die kristallographischen Berechnungen wurden mit dem Programmsystem SHELX-76 (G. M. Sheldrick) und eigenen Programmen (W. S. S.) durchgeführt. Wir danken Frau A. Borkenstein für ihre experimentelle Mitarbeit.

Experimenteller Teil

2-(1-Adamantyl)-2,2'-spirobi[1,3,2-benzodioxaphosphol] (4) (vgl. Lit.¹⁴): Unter Beachtung der für die Handhabung feuchtigkeitsempfindlicher Verbindungen üblichen Vorsichtsmaßnahmen wurde ein Gemisch von 3.7 g (0.015 mol) (1-Adamantyl)tetrafluorphosphoran ¹⁵) und 7.8 g (0.03 mol) Brenzcatechin-bis(trimethylsilylether)¹⁶) in ein dickwandiges Glasrohr eingefüllt und nach dem Abschmelzen 5 d auf 50 °C erwärmt. Nach dem Abkühlen und Öffnen des Rohres wurde Fluortrimethylsilan (5.0 g; 88%) abgezogen. Der Rückstand wurde aus Toluol umkristallisiert. Ausb. 5.5 g (94%) 4; Schmp. 290 °C. ³¹P-NMR (in Toluol): $\delta_P = -1.7$ (gegen ext. H_3PO_4). - MS (70 eV): m/e = 382 (98%, M⁺), 325 (1%, M - C₄H₉), 274 (1%, M - C₆H₄O₂), 247 (30%, M - C₁₀H₁₅), 135 (100%, M - C₁₂H₈O₄P).

C22H23O4P (382.4) Ber. C 69.10 H 6.06 Gef. C 68.83 H 6.16

Röntgenstrukturanalyse

4 kristallisiert orthorhombisch, Raumgruppe $P_{2_12_12_1}$ mit den diffraktometrisch bestimmten Gitterkonstanten a = 668.5(1), b = 1575.8(2), c = 1755.1(2) pm, Z = 4, $D_x = 1.37$ g cm⁻³. Die Intensitätsdaten wurden auf einem Syntexdiffraktometer (Typ P2₁) in $\Theta - 2\Theta$ -Betrieb gemessen (Mo- K_x , $\lambda = 71.069$ pm). Die Daten wurden nicht für Absorptionseffekte ($\mu = 1.3$ cm⁻¹) korrigiert.

Atom	x/a	y/h	7/C
р	0.1272(1)	1.0350(1)	0,5022(1)
0(1)	-0.1092(3)	1,0379(1)	0,5317(1)
0(2)	0.1950(3)	0,9931(1)	0,5877(1)
0(3)	0.3487(3)	1.0629(1)	0.5090(1)
0(4)	0.0503(3)	1,1108(1)	0.4397(1)
C(11)	-0.1403(5)	0.9963(2)	0.6001(1)
C(12)	0.0369(5)	0.9706(2)	0.6319(1)
C(13)	0.0399(7)	0,9283(2)	0.7005(2)
C(14)	-0.1405(7)	0.9140(2)	0.7367(2)
C(15)	-D.3174(7)	0,9411(3)	0.7044(2)
C(16)	-0,3215(6)	0,9827(2)	0.6347(2)
C(21)	0,3748(6)	1.1473(2)	0.4572(1)
C(22)	0.2017(5)	1,1637(2)	0,4178(2)
C(23)	0.1942(8)	1,2277(3)	0,3640(2)
C(24)	0,3663(9)	1,2745(2)	0.3522(2)
C(25)	0.5383(8)	1.2578(2)	0.3914(2)
C(26)	0.5479(6)	1.1924(2)	0.4458(2)
C(31)	0,1546(5)	0.9434(2)	U.4383(1)
C(32)	D,3389(7)	0.9583(3)	0.3846(3)
C(33)	0.3574(8)	0.8772(3)	0.3277(3)
6(34)	0.1730(8)	0.8773(4)	U.283O(3)
C(35)	-0,0060(7)	0.8556(4)	0.3277(3)
0(36)	0,0173(9)	0.7812(3)	0.3792(4)
C(37)	0.2046(9)	0.7813(3)	0,4231(3)
C(36)	0.1813(11)	0.8587(3)	0,4813(2)
C(39)	0.3852(10)	0.8026(4)	0.3753(5)
C(40)	-0,0350(7)	D.9359(3)	0,3868(3)

Tab. 2. Atomparameter

C 259/78 Tab.2

Tab. 3. Bindungslängen (pm)

Tab. 4. Bindungswinkel (°)

D(1) - P	166.3(2)	0(2) - P	170.1(2)	D(2)-P=0(1)	89.4(1)	0(3)-P-0(1)	144.0(1)
D(3) - P	166.7(2)	0(4) ~ P	170.0(3)	O(3)-P-O(2)	82.9(1)	0(4)-P-0(1)	83,9(1)
G(31) - P	183.6(3)	C(11) - D(1)	138.4(4)	O(4)-P-O(2)	157.2(1)	0(4)-P-0(3)	89.6(1)
C(12) - 8(2)	135.8(4)	C(21) - D(3)	137.3(4)	C(31)-P-D(1)	107.9(1)	C(31)-P+O(2)	101.9(1)
G(22) = O(4)	136.6(5)	C(12) - C(11)	137.1(5)	C(31)-P-D(3)	108.1(1)	C(31)-P-O(4)	100.9(1)
C(16) - C(11)	137.3(6)	C(13) - C(12)	137.6(5)	C(11)-D(1)-P	113.6(2)	D(12)-0(2)-P	113.5(2)
C(14) - C(13)	138.1(7)	C(15) - C(14)	137,9(7)	C(21)-D(3)-P	113.6(2)	C(22)-O(4)-P	112.7(2)
C(16) - C(15)	138.8(6)	C(22) = C(21)	137,2(5)	C(12)-C(11)-O(1)	111.3(3)	C(16)-C(11)-O(1)	125,2(3)
C(26) - C(21)	137.3(6)	C(23) - C(22)	138.4(6)	C(11)-C(12)-O(2)	111.2(3)	C(13)-C(12)-D(2)	128.0(3)
C(24) - C(23)	138.2(8)	C(25) - C(24)	136 .6(B)	C(22)-C(21)-O(3)	111.4(3)	C(26)-C(21)-O(3)	125,9(3)
C(26) ~ C(25)	14D.5(6)	C(32) - C(31)	156,9(6)	C(21)-C(22)-D(4)	111.6(3)	C(23)-C(22)-D(4)	127.6(4)
C(38) = C(31)	154.3(6)	C(40) - C(31)	156,2(6)	C(32)-C(31)-P	109.2(3)	C(38)=C(31)-P	113.1(3)
C(33) - C(32)	162.6(8)	C(34) - C(33)	146.1(8)	C(40)-C(31)-P	109.4(3)		
C(39) - C(33)	145.6(10)	C(35) = C(34)	147.1(8)				
C(36) = C(35)	148.9(9)	C(40) - C(35)	164.7(B)	C 259/78Tab.4			
E(37) - E(36)	147,1(9)	C(38) = C(37)	160,0(8)				
C(39) - C(37)	150.8(10)						

C 259/ 78 Tab.3

Von 3668 gemessenen Reflexen $(2\Theta < 50^{\circ})$ wurden 2757 mit $F \ge 2.5 \sigma$ (F) verwendet. Die Struktur wurde durch direkte Methoden gelöst und zu R = 0.058, $R_w = 0.057$ verfeinert. Die Positionen der Wasserstoffatome sowie ihre isotropen Temperaturfaktoren wurden frei verfeinert. Alle anderen Atome erhielten anisotrope Temperaturfaktoren. In einer letzten Differenz-Synthese wurden drei Peaks gefunden (ca. 0.8 eÅ⁻³), die Abstände zwischen 151 und 164 pm von C (31) zeigten und auf eine Fehlordnung des Adamantylrestes (um 60° rotiert) schließen ließen. Da aber die restlichen dazugehörenden Atome nicht erschienen, wurde diese Fehlordnung in der Verfeinerung nicht berücksichtigt. Die Gewichte waren durch die Gleichung $w = k (\sigma^2(F_o) + gF_o^2)^{-1}$ gegeben; k und g wurden auf 1.1039 bzw. 0.001665 verfeinert. Tabellen der Lageparameter der Wasserstoffatome und der anisotropen Temperaturfaktoren sowie der gemessenen und berechneten Strukturfaktoren sind von W. S. S. erhältlich.

Literatur

- ¹⁾ R. Hoffmann, J. M. Howell und E. L. Muetterties, J. Am. Chem. Soc. 94, 3047 (1972).
- ²⁾ R. R. Holmes, J. Am. Chem. Soc. 97, 5379 (1975); J. A. Deiters, J. C. Gallucci, T. E. Clark und R. R. Holmes, ebenda 99, 5461 (1977); W. S. Sheldrick, Top. Curr. Chem. 73, 1 (1978).
- ³⁾ R. R. Holmes und J. A. Deiters, J. Am. Chem. Soc. 99, 3318 (1977).
- ⁴⁾ R. Sarma, F. Ramirez und J. F. Marecek, J. Org. Chem. 41, 473 (1976).
- ⁵⁾ H. Wunderlich, Acta Crystallogr., Sect. B 30, 939 (1974).
- ⁶⁾ H. Wunderlich, Acta Crystallogr., Sect. B 34, 2015 (1978).
- ⁷⁾ R. K. Brown und R. R. Holmes, J. Am. Chem. Soc. 99, 3326 (1977).
- ⁸⁾ R. K. Brown und R. R. Holmes, Inorg. Chem. 16, 2294 (1977).
- ⁹⁾ H. Wunderlich und D. Mootz, Acta Crystallogr., Sect. B 30, 935 (1974).
- ¹⁰ A. Schmidpeter, T. von Criegern, W. S. Sheldrick und D. Schomburg, Tetrahedron Lett. 1978, 2857.
- ¹¹⁾ R. Sarma, F. Ramirez, B. McKeever, J. F. Marecek und S. Lee, J. Am. Chem. Soc. 98, 581 (1976); Erratum, ebenda 98, 4691 (1976).
- ¹²⁾ M. G. Newton, J. E. Collier und R. Wolf, J. Am. Chem. Soc. 96, 6888 (1974).
- ¹³⁾ D. Hellwinkel, W. Krapp, D. Schomburg und W. S. Sheldrick, Z. Naturforsch., Teil B 31, 948 (1976).
- ¹⁴⁾ G. O. Doak und R. Schmutzler, J. Chem. Soc. D 1970, 476; J. Chem. Soc. A 1971, 1295.
- ¹⁵⁾ J.-V. Weiß und R. Schmutzler, J. Chem. Soc., Chem. Commun. 1976, 643.
- ¹⁶⁾ M. Jacovic, Z. Anorg. Allg. Chem. 288, 324 (1956).

[259/78]